Potential for drug delivery in the treatment of lower extremity occlusive disease: what will the practice look like in 5 years?

Scheinert, Dierk MD
Head of Medical Department V - Angiology
University of Leipzig Medical Center, Germany
Disclosure

Advisory Board /Consultant:
Abbott, Acotec, Biotronik, Boston Scientific, Cook Medical, Cordis, CR Bard, Gardia Medical/Allium, Medtronic, TriReme Medical, Trivascular, Upstream Peripheral Technologies
Blockade of cell-cycle progression during mitosis by binding to and stabilizing microtubules

Snyder, PNAS 2001; 98: 5312-6

Wessely, J Am Coll Cardiol 2006; 47: 708-14

Paclitaxel vs Limus for Local Drug Delivery

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Sirolimus (or Analogs)</th>
<th>Paclitaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Action</td>
<td>Cytostatic</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Margin of Safety</td>
<td>10,000 fold</td>
<td>100 fold</td>
</tr>
<tr>
<td>Therapeutic Range</td>
<td>Wide</td>
<td>Narrow</td>
</tr>
<tr>
<td>Anti-Restenotic</td>
<td>Yes (Higher)</td>
<td>Yes</td>
</tr>
<tr>
<td>Anti-Inflammatory</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tissue Absorption</td>
<td>Slow</td>
<td>Fast</td>
</tr>
<tr>
<td>Tissue Retention</td>
<td>Short</td>
<td>Long</td>
</tr>
</tbody>
</table>

Sirolimus versus Paclitaxel:
Tissue Absorption and Retention

Tissue Binding Capacity (TBC) of labeled dextran, paclitaxel and sirolimus in 0.040-mm-thick bovine internal carotid tissue segments.

Is there really a problem with Paclitaxel toxicity?
Paclitaxel Safety – Pre-FDA Panel

- A mortality signal was reported by multiple meta-analyses performed on a similar pool of RCTs.
- As more RCT data were accumulated, both in additional cohorts and recovery of missing data, the mortality signal attenuated.
- Key lessons learned include:
 - Limitations of interpreting data beyond original study design.
 - Effects of missing data.
 - Need for improved patient follow-up, e.g., mitigating lost-to-follow-up through tiered patient consent.
 - Limitations of not including key data collection during study design and conduct, e.g., meds, HCP interactions, contralateral procedures.

2. FDA Executive Summary Figure 14; pre vital status.
3. Whatley E, FDA presentation, Circulatory System Devices Panel Meeting, Gaithersburg, MD June 19, 2019; post vital status.
Multicenter, randomized trial comparing paclitaxel versus non-paclitaxel devices in the treatment of lower extremity peripheral artery disease

Interim analysis performed to determine risk of mortality associated with patients treated with paclitaxel devices

100% follow-up of SWEDEPAD patients mitigates the effects of missing data encountered in industry-sponsored RCTs

2,289 patients; mean follow-up time 2.49 years

Hazard ratio of 1.06 [95% CI 0.92 to 1.22] in overall population (top (A));

IC and CLTI populations exhibit hazard ratios of 1.18 and 1.04, respectively [left]

VOYAGER PAD

- Randomized trial of patients with peripheral artery disease treated by rivaroxaban versus placebo\(^1\)
- These data were analyzed to assess whether use of drug-coated devices versus non drug-coated devices is associated with all-cause mortality

- Complete ascertainment of vital status was achieved in 99.6% of patients
- 4,379 patients were followed through a median follow-up time of 31 months
- Mortality hazard ratio of 0.95 [95% CI 0.83 to 1.09; P=0.49] in IPTW adjusted comparison (top)
- Unplanned revascularization hazard ratio of 0.84 [95% CI 0.76 to 0.92; P=0.0003] in IPTW adjusted comparison (bottom)\(^2\)

As data become more complete, mortality signal reduces
Observational studies have not detected a mortality signal
Independent interim RCT analysis did not detect signal (SWEDEPAD)
SIROLIMUS ELUTING BALLOON CHALLENGES

<table>
<thead>
<tr>
<th>PACLITAXEL</th>
<th>VS</th>
<th>SIROLIMUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbs quickly and tends to localize in sub-intimal space and partitions significantly in adventitia</td>
<td>• Absorbs slowly and spreads throughout entire artery where it dilutes down to sub-therapeutic levels</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing the comparison between PACLITAXEL and SIROLIMUS eluting balloons](image)

Circulation 2010; 121: 2672-80
SELUTION SLR: Sirolimus Eluting Balloon with Sustained Drug Release
Drug Transfer SELUTION SLR™ vs. Competition

<table>
<thead>
<tr>
<th>% of Total Device Drug Load</th>
<th>Med Alliance SELUTION</th>
<th>Bard LUTONIX</th>
<th>Medtronic IN.PACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost during procedure</td>
<td>36%</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td>Retained on balloon</td>
<td>25%</td>
<td>12%</td>
<td>14%</td>
</tr>
<tr>
<td>Transferred to vessel (1 hr)</td>
<td>39%</td>
<td>5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

SELUTION SFA Primary Endpoint

LLL at 6M (N=34)

* Late Lumen Loss presented as median value

T Zeller et al, Six-Month Outcomes from the First-in-Human SELUTION Sustained-Limus-Release Drug-Eluting Balloon Trial in Femoropopliteal Lesions, JVET 2020
doi/10.1177/1526602820941811

Mean LLL
0.29 ± 0.84 mm

0.19 mm*
EJLUITION SFA Results In Context

Late Lumen Loss

<table>
<thead>
<tr>
<th>Trial</th>
<th>Ranger SFA</th>
<th>PACIFIER</th>
<th>Tepe et al</th>
<th>LEVANT I</th>
<th>FemPac</th>
<th>BIOLUX-PI</th>
<th>ILLUMENATE</th>
<th>SELUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapy</td>
<td>Ranger</td>
<td>IN.PACT</td>
<td>DCB not specified</td>
<td>Lutonix</td>
<td>Ptx coated</td>
<td>Passeo-18 Lux</td>
<td>Stellarex</td>
<td>SELUTION</td>
</tr>
<tr>
<td>Mean Lesion Length (mm)</td>
<td>6.8</td>
<td>7.0</td>
<td>5.7</td>
<td>8.1</td>
<td>5.7</td>
<td>6.1</td>
<td>7.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Bailout Stenting (%)</td>
<td>21%</td>
<td>21%</td>
<td>11%</td>
<td>3%</td>
<td>9%</td>
<td>N/A</td>
<td>5%</td>
<td>8%</td>
</tr>
</tbody>
</table>

*LLL Selution presented as median value

6M TLR

<table>
<thead>
<tr>
<th>Trial</th>
<th>Ranger SFA</th>
<th>PACIFIER</th>
<th>Tepe et al</th>
<th>LEVANT I</th>
<th>FemPac</th>
<th>BIOLUX-PI</th>
<th>ILLUMENATE</th>
<th>SELUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapy</td>
<td>Ranger</td>
<td>IN.PACT</td>
<td>DCB not specified</td>
<td>Lutonix</td>
<td>Ptx coated</td>
<td>Passeo-18 Lux</td>
<td>Stellarex</td>
<td>SELUTION</td>
</tr>
<tr>
<td>Mean Lesion Length (mm)</td>
<td>6.8</td>
<td>7.0</td>
<td>5.7</td>
<td>8.1</td>
<td>5.7</td>
<td>6.1</td>
<td>7.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Bailout Stenting (%)</td>
<td>21%</td>
<td>21%</td>
<td>11%</td>
<td>3%</td>
<td>9%</td>
<td>N/A</td>
<td>5%</td>
<td>8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Trial Programme: ~2000 Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECTION FIM</td>
</tr>
<tr>
<td>SUCCESS PTA (SFA & CLI)</td>
</tr>
<tr>
<td>SELECTION SFA IDE</td>
</tr>
<tr>
<td>PRESTIGE</td>
</tr>
<tr>
<td>PRISTINE</td>
</tr>
<tr>
<td>SELECTION BTK IDE</td>
</tr>
<tr>
<td>STEP (Foot Trial)</td>
</tr>
<tr>
<td>SAVE</td>
</tr>
<tr>
<td>ISABELLA</td>
</tr>
<tr>
<td>SELECTION AVF IDE</td>
</tr>
<tr>
<td>ED SELECTION ED</td>
</tr>
</tbody>
</table>
Nanolute Technology for Sirolimus Delivery (Concept Medical)

Conversion of Sirolimus drug into sub-micron sized particles

Encapsulation of sub-micron sized Sirolimus into highly biocompatible drug carrier phospholipid

Upon inflation of MagicTouch DCB at target site, drug carrier with Sirolimus inside gets transferred to the vessel wall via co-efficient diffusion

Upon body pH variation, drug carrier mimics body lipids and liberates Sirolimus into tissue

The sub-micron sized Sirolimus drug particles diffuse into the deeper vessel layers
CLINICAL TRIALS - Peripheral

XTREME - FIM
- PI: Dr. Sameer Dani
- Sponsored, Observational, Prospective, All-comers, Indian Real-world Registry
- Number of Patients: 39
- Status: Closed

X-TOSI
- PI: Prof. Edward Choke
- Sponsored, Observational, Prospective, All-comers, Single Arm, Real-world
- Recruiting of centres: closed
- Number of Patients: 50
- Status: 1 year follow-up ongoing

FUTURE BTK- ASIA
- PI: Prof. Edward Choke
- Sponsored, Randomised, Double blind, Multicentres (130 SCB : 65 PTA)
- Recruiting of centres: closed
- Number of Patients: 219
- Status: 3 Patients Enrolled
FUTURE SFA - ASIA

- PI: Prof. Edward Choke
- Sponsored, Randomised, Double blind, Multicentres (102 SCB : 51 PTA)
- Recruiting of centres: closed

279 Patients
5 Patients Enrolled

FUTURE BTK - EUROPE

- IIT, Randomised, Single blind, Multicentres (130 SCB : 65 PTA)
- Recruiting of centres: ongoing

195 Patients
Open Project*

FUTURE SFA - EUROPE

- IIT, Randomised, Single blind, Multicentres (102 SCB : 51 PTA)
- Recruiting of centres: ongoing

153 Patients
Open Project*
<table>
<thead>
<tr>
<th>Study</th>
<th>Sites</th>
<th>PI/Co-PI</th>
<th>Patients</th>
<th>Enrollment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SirPAD - Zurich</td>
<td>Germany and Austria</td>
<td>Prof. Nil Kucher</td>
<td>1132</td>
<td>73 Patients Enrolled</td>
</tr>
<tr>
<td>SIRONA - Germany</td>
<td>Germany</td>
<td>Prof. Dierk Seinert</td>
<td>478</td>
<td>Coming soon</td>
</tr>
<tr>
<td>LIMES - Germany</td>
<td>Germany</td>
<td>Dr. Francesco Liistro</td>
<td>244</td>
<td>Coming soon</td>
</tr>
<tr>
<td>DEBATE BTK DUeL</td>
<td></td>
<td>Dr. Francesco Liistro</td>
<td>172</td>
<td>9 Patients Enrolled</td>
</tr>
</tbody>
</table>
SCB vs. PCB in Femoropopliteal Arteries
SIRONA Study

478 subjects
Fem-pop Disease up to 30cm

Randomization

1:1

239 subjects
SCB

≤ 10 cm/ > 10 cm
n=80

≤ 20 cm/ > 20 cm
n=80

≤ 30 cm
n=79

239 subjects
PCB

≤ 10 cm/ > 10 cm
n=80

≤ 20 cm/ > 20 cm
n=80

≤ 30 cm
n=79

Prof. Dr. Ulf Teichgräber
Universitätsklinikum Jena
Institut für Radiologie

Prof. Dr. Dierk Scheinert
Universitätsklinikum Leipzig
Klinik für Angiologie
COMPARE Study: Primary patency @ 2 years

Primary patency (%)

Logrank p-value = 0.96

Mean lesion length 12.5 cm

KM-estimate (95%CI) @ 365 days

<table>
<thead>
<tr>
<th></th>
<th>730 days</th>
<th>790 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low dose DCB</td>
<td>70.6% (±3.4)</td>
<td>64.4% (±3.6)</td>
</tr>
<tr>
<td>High dose DCB</td>
<td>71.4% (±3.5)</td>
<td>63.7% (±3.7)</td>
</tr>
</tbody>
</table>

Patients without an event at 790 days of follow-up or later were censored at 790 days.

Steiner S LINC 2021
Summary Femoral

• Paclitaxel Coated Balloons and Stents have a strong track record of efficacy data in a broad spectrum of lesions including complex disease with proven long-term durability

• Safety profile of Paclitaxel coated devices is still under debate

• Sirolimus has great potential as an antiproliferative substance

• Effective delivery technologies for Sirolimus have been developed and FIM data are promising

• Comparative clinical data from RCT`s are still missing and will likely only be available in appr. 2 to 3 years
Medtronic BTK DCB Programme (PTX)

CENTRAL ILLUSTRATION: Treatment Effect of the IN.PACT Amphilior DCB in Infrapopliteal Lesions Through 60 Months

![Graph](Image)

Lutonix BTK DCB Programme (PTX)

K-M Efficacy Endpoint at One Year*

![Graph](Image)

Composite Efficacy Endpoint: Freedom from above ankle amputation, target-lesion occlusion, and clinically-driven target lesion reintervention

Geraghty P, LINC 2020
ACOTEC DCB Programme (PTX)

ACO ART BTK - Italy

ACO ART II BTK - China

Jia X J Endovasc Ther 2020 1526602820969681. doi: 10.1177/1526602820969681
Meta-analysis showed benefits of DES using Sirolimus compared to BMS or PTA in BTK1

The preponderance of evidence for infrapopliteal DES, has demonstrated significant benefit over both BMS and PTA for (1) patency (2) reduced reinterventions, (3) reduced amputation, and (4) improved event-free survival.

DEBATE BTK DUELL Study (PI: F. Liistro)

Key Exclusions
- Allergy to Paclitaxel or Sirolimus
- Contraindication for combined antiplatelet treatment
- Life expectancy <1 year
- Lack of consent
- Need for BTA angioplasty

Key Inclusions
- RC 4-5-6
- Stenosis / occlusions >40 mm in at least 1 tibial vessel with distal run-off (Kawarada 1-2a-2b)
- Optimal balloon angioplasty: <50% residual stenosis and PSVR <2.4
- No flow-limiting dissection

SIROLIMUS DCB
(Concept Medical)

PACLITAXEL DCB
(Acotec Ltd)

172 CLI Patients
4 centers in Tuscany

Optimal angioplasty result

random (1:1)

Aspirin + Clopidogrel
3 months

6-month Angiography

Secondary Endpoints:
12-month TLR; TL occlusion major amputation

Primary Endpoint:
6-month LLL
Independent CoreLab analysis
Non inferiority or superiority margin (10%) power of 80% ($1 - \beta \geq 0.80; \alpha = 0.05$)
BTK lesions have a higher degree of circumferential medial calcification compared to Fem-Pop lesions.

VESSEL PATHOLOGY OF CLI PATIENTS, EXTENT OF MEDIAL CALCIFICATION

<table>
<thead>
<tr>
<th>No calcification</th>
<th><25% of circumference</th>
<th>≥25% to <50% of circumference</th>
<th>≥50% to <75% of circumference</th>
<th>≥75% of circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fem-pop</td>
<td>Infra-pop</td>
<td>Fem-pop</td>
<td>Infra-pop</td>
<td>Fem-pop</td>
</tr>
<tr>
<td>42%</td>
<td>16%</td>
<td>13%</td>
<td>7%</td>
<td>32%</td>
</tr>
<tr>
<td>28%</td>
<td>29%</td>
<td>10%</td>
<td>13%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Photo Source: Mustapha, J.A., LINC 2015
The Bullfrog® Micro-Infusion Device
The Bullfrog® Micro-Infusion Device Delivers Drug Directly to the Adventitia and Perivascular Tissues

Contrast medium co-administered to track injections and provide complete coverage
The Temporary Spur Stent System* (Reflow Medical)

- Self Expanding nitinol stent with an integrated balloon
- Circumferential tines enable controlled penetration of vessel plaque, calcium, artery wall
 - Enhance drug uptake
 - Acute luminal gain while minimizing vessel recoil
 - Reduce dissections
 - Stent-like results, nothing left behind
- Following Spur treatment, area treated with commercially available DCB

* For clinical investigational use only
Drug Coated Temporary Spur Stent System*

- Utilizing the Uncoated Temporary Spur System: Self Expanding nitinol stent with an integrated balloon

Drug Coating
- Sirolimus API and excipient
- Coated Self Expanding nitinol stent with an integrated coated balloon
- Increases drug delivery to targeted vessel

Addressing common coating challenges
- Covered design minimizes drug loss to circulation in transit
- Allows uniform and rapid drug deposition directly into arterial wall
- Nothing left behind
 - Natural anatomical function of the vessel preserved

For clinical investigational use only
Calcification Promotes Recoil and Dissection

- Infrapopliteal disease is characterized by intimal and medial calcification
 - Intimal calcification is disorganized and not structured
 - Medial calcification in the vessel wall is organized and structured in crescent shapes
 - Medial calcification occurs independently of atherosclerosis and is strongly associated with aging, CKD, and diabetes mellitus
- Vascular calcification introduces compliance mismatch that can promote mechanical failure including increased dissection and recoil

Photo Source: Mustapha, J.A., LINC 2015
DCB vs DES in long* BTK lesions shows a benefit to a drug-eluting stent over drug delivery via balloon

IDEAS RCT PRIMARY ENDPOINT: TLR >50% BY ANGIOGRAPHY

Scaffolding with a stent provides additional benefit over drug alone

*Minimum lesion length 70mm.
Meta-analysis showed benefits of DES compared to BMS or PTA in BTK\(^1\)

The preponderance of evidence for infrapopliteal DES, has demonstrated significant benefit over both BMS and PTA for (1) patency (2) reduced reinterventions, (3) reduced amputation, and (4) improved event-free survival.

Vessel support (scaffolding) AND anti-proliferative drugs are needed but many clinicians do not want to leave a permanent implant behind.

CLI Challenges and Treatment Objectives

ACUTE
- Maximize/Restore in-line flow to the distal vasculature to improve perfusion
- Minimize acute vessel recoil
- Repair dissections
- If delivering drug, minimize downstream particulate

LONG TERM
- Enhance wound-healing
- Maintain patency to prevent recurrence and need for re-intervention
- Leave nothing behind
- Enable future re-treatment if necessary

IDEAL TREATMENT FOR BTK ADDRESSES THREE MAIN NEEDS

1. **DRUG**
 - Inhibit neointimal hyperplasia

2. **SCAFFOLD**
 - Resist recoil/repairs dissection

3. **TEMPORARY**
 - Leave nothing behind

Top right: representative photomicrograph of porcine coronary artery 48 months post implant with Absorb BVS
Summary BTK

• Results with Paclitaxel coated devices in BTK arteries are mixed

• Sirolimus has proven efficacy in BTK arteries on DES platform and a Head to Head RCT comparing SCB vs. PCB is under way.

• Calcification is a significant challenge in BTK arteries and may necessitate specific drug-delivery strategies

• Scaffolding may be important to optimize results – Bioabsorbable drug-eluting scaffolds may be a solution in the future