Managing Calcification: SFA-Pop

Niten Singh, MD
University of Washington
Seattle, WA, USA
Disclosure

Speaker name:

...

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
SFA and Popliteal Artery

- All arteries have radial distension with pulsatile blood flow
- SFA and popliteal artery – torsion, bending, pinching, axial shortening, and lengthening
- Numerous challenges already... without calcification!

Managing Calcification in the SFA/Pop

- Understand calcium *will* prevent effective DCB use
- Calcium will lead to a high rate of recoil and dissection
- What are methods to be successful in this vascular bed?
 - Recognize and classify the lesion
 - Understand best options in your patient
 - Identify *your* techniques and options that have been successful
Atherectomy

• VIVA REALITY Trial (presented at VIVA 2020)
• Krishna Rocha-Singh- PI
 • Directional Atherectomy and DCB
 • Lesion length 179.36+/−81.4 mm
 • Calcium Severity - PACSS Score Grade 4- 67.6%
 • 76.7% 12-month primary patency
 • 92.6% 12-month freedom from CD-TLR
 • Distal embolization 12.8%
Atherectomy

• Effective at debulking
• Very effective at focal lesions
• Caution with disadvantaged run-off and need distal embolic protection
Atherectomy Devices

<table>
<thead>
<tr>
<th></th>
<th>Jetstream™ Atherectomy System (Boston Scientific)</th>
<th>Peripheral Rotablator™ Rotational Atherectomy System (Boston Scientific)</th>
<th>Diamondback 360™, Stealth 360™ Atherectomy System (Cardiovascular Systems, Inc)</th>
<th>SilverHawk™, TurboHawk™ Plaque Excision System (Covidien)</th>
<th>Turbo-Elite™ Laser Atherectomy Catheter (Spectranetics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front-Cutting</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Cutting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Active Aspiration</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentric Lumens</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Lesion Morphology:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Soft/Fibrotic Plaque</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thrombus</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Intravascular Lithotripsy (IVL)

- Shockwave Medical
- Benefits- low inflation pressure of balloon
- Fractures both superficial and deep calcium
- Sonic pressure waves generated allow for this to be a safe procedure
IVL

• DISRUPT PAD III Gray and Tepe PI (Presented at VIVA 2020)
 • Largest randomized trial of calcified vessels
 • 306 patients randomized to PTA vs IVL
 • 129 mm average calcified length
 • 79% reduction in dissection vs PTA
 • 75% reduction in provisional stenting vs PTA
 • Appears to be a solid choice for vessel prep for DCB
Scaffolding in SFA and Popliteal Artery

• Standard Nitinol stents are prone to compression
• Woven nitinol stents (Supera) more resistant to compression
Supera stent and compression

Graph showing force (lbs/mm) versus deflection (mm) for Superia® 5.5 x 100 mm, Superia® 6.5 x 100 mm, and Standard Nitinol Stents 6.0 x 100 mm. The graph highlights that Superia stents have greater than 4x compression resistance compared to standard Nitinol stents.

Images showing physical samples of the Superia Stent and Laser-Cut Stent.
Supera in Severe Calcium

SUPERB Data - Severe Calcification

<table>
<thead>
<tr>
<th>% of Lesions with Severe Calcification (SUPERB Trial)</th>
<th>45% (n=118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patency (VIVA 12 months)</td>
<td>89%</td>
</tr>
</tbody>
</table>

Freedom from TLR % Over Time in Severe Calcium

- 12 months: 95%
- 24 months: 92%
- 36 months: 88%
Supera in Calcified Lesions
Conclusions

• SFA/Pop
• Numerous options available
• Lessons learned:
 • Vessel prep is key to stent and DCB success
 • IVL is very promising modality that appear to have the safety factor
 • Scaffolding-Supera stents over standard laser cut nitinol stents
 • Atherectomy is always an option