

Utilizing complementary imaging modalities to guide strategy and optimize outcomes

Daniel van den Heuvel, MD

St Antonius Hospital

Nieuwegein, The Netherlands

Disclosures

Daniel van den heuvel

Consultant to LimFlow SA, Philips
Speaker for LimFlow SA, Philips, Asahi

CE-MRA/CTA

Dx/ PSV and Continuous waveform

Complementary Imaging Modalities?

Imaging modality for peripheral intervention field

Modality	Angiography	СТА	IVUS	OCT/OFDI	Angioscopy
IMAGE		1			
resolution(µm)	200	300	80-150	10-20	200
Radiation Exposure	+	++		Ē	- 長沙
Contrast Media	*	++		+/-	+/-
Technique		11	Easy	So So	Complex
Calcification	Yes	Yes	Just superficial	Yes	Yes
Vessel size	Underestimation	Difficult	Overestimation	Accurate	Difficult
Long Axis	Yes	Yes	Yes (AltaView)	Yes	No
Reimbursement	Yes	Yes	Yes	No	Yes

Intervention lab with Azurion 7C20 FlexArm

St. Antonius hospital Nieuwegein

Why Complementary Imaging Modalities?

- Digital Subtraction Angiography/ Fluoroscopy
- Extra Vascular Ultra-Sound (EVUS)
- Intra Vascular Ultra-Sound (IVUS)

Treatment Algorithm PAD

Wire Crossing

Determine best treatment

Optimal Result

Assess treatment outcome

Wire Crossing

Vessel wall calcification

Wire movement

Wire Location

EVUS Assisted recanalization of SFA origin

Imaging requirements

Characterize Vessel Wall Calcification

Determine Lumen diameter

Diagnose large subintimal space Flow Limiting Dissections

Balloon size, prevent DCB undersizing, achieve maximal luminal gain,

Atherectomy

Stent type: SNS/ DES/ VMI/ Tack

Assess Treatment Outcome

Easy assessment of Luminal Gain

Balloon sizing	DSA/QVA	EVUS	IVUS
SFA/POP	+	++	+++
Prox. Tibial	++	+	+++
Dist. Tibial	+	++	++

Eiberg JP, Gronvall Rasmussen JB, Hansen MA, Schroeder TV. Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur J Vasc Endovasc Surg. 2010;40:507-512.

Balloon Sizing

- Angiography is actually lumenography
- With angiography lumen diameter is underestimated
- An artery consists of a lumen
 AND a vessel wall

Calcifications	DSA/QVA	EVUS	IVUS
SFA/POP	++	+	+++
Prox. Tibial	++	+	+++
Dist. Tibial	++	+	+++

Mintz GS, Popma JJ, Pichard AD, et al.. *Circulation*. 1995;91(7):1959–1965. doi:10.1161/01.cir.91.7.1959

Vessel wall calcifications histopathology

Figure 1. Examples of histological results after 100% balloon oversizing in two human cadaver tibial arteries (A,B) in the von Kossa staining (calcium deposits brown; c). The ilbissection classification is based on the circumferential extend $(1 = < 180^\circ, 2 = \ge 180^\circ)$, and depth of vessel damage in intima (i), media (m) or adventitia (a). Circumferentially distributed calcium (A) in the vessel wall results in less severe dissection patterns (d) (fDissection classification C1) compared to spot calcium deposits (B, \overline{D}) in the vessel wall results in less severe dissection patterns (A) ((B)) is (B)).

Calcium absence

Circumferential

Spot distribution

Significance of Vessel wall calcifications

Vessel Calcification Patterns should Determine Balloon Size Strategy in BTK Angioplasty

IVUS GUIDED TREATMENT STRATEGY

- 1. avoids balloon under-sizing
- 2. drives ad-hoc balloon over-sizing
 - beneficial in circumferential calcium (limited vessel damage and ↑ likelihod to maximize lumen gain)
 - to be avoided in spot-calcium (↑ incidence of severe dissections)

Vessel wall calcifications by IVUS

Fanelli F, Cannavale A, Gazzetti M, Lucatelli P, Wlderk A, Cirelli C, d'Adamo A, Salvatori FM. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014 Aug;37(4):898-907

Complementary EVUS

In addition to functional imaging:

- EVUS Assisted Vessel Access
- EVUS Assisted vessel closure
- US guided nerve blocks

Innovative Imaging Modalities

Perfusion Angiography

Vessel analysis

Fiber Optic RealShape (FORS) technology

Augmented Reality

Summary

DSA/ Fluoroscopy and EVUS are complementary imaging modalities

IVUS is the next level imaging tool for vessel assessment

EVUS remains indispensable for optimizing treatment outcome

Utilizing complementary imaging modalities to guide strategy and optimize outcomes

Daniel van den Heuvel, MD

St Antonius Hospital

Nieuwegein, The Netherlands