2 year results from the COMPARE trial
- Low-dose vs. high-dose DCB in femoropopliteal arteries

Sabine Steiner, MD
Division of Angiology
University Hospital Leipzig
Disclosure

Speaker name:
...

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☑ Others: Bayer, C.R. Bard

☐ I do not have any potential conflict of interest
COMPARE RCT: Study objectives

Study aim
To compare high dose vs. low dose paclitaxel coated balloons for the treatment of high grade stenotic or occluded femoropopliteal lesions

Patient population
Patients with Rutherford class 2-4

Principal investigator
Dierk Scheinert, MD; University of Leipzig

Study sites
15 sites in Germany

Investigational Device
- Low dose DCB: Ranger™
- Paclitaxel Dose: 2.0μg/mm²
- TransPax coating; Excipient: Citrate ester

Control Device
- High dose DCB: IN.PACT Admiral™/IN.PACT Pacific™
- Paclitaxel Dose: 3.5μg/mm²
- FreePac™ hydrophilic coating; Excipient: Urea
COMPARE RCT: Study Design and Methods

| Study Design | ➢ Investigator-initiated, prospective, multicenter, non-inferiority trial
| | ➢ 414 patients undergoing 1:1 randomization
| | ➢ Stratification according to lesion length
| | ➢ Independent monitoring with 100% source data verification
| | ➢ Independent corelab for angio and duplex
| | ➢ Clinical events committee

| Funding | ➢ Study sponsor: University of Leipzig
| | ➢ Funding through a research grant from Boston Scientific
| | ➢ Funding source not involved in collecting, monitoring and analyzing study data

| Follow-up | ➢ In-house visits: 6, 12, **24 months (efficacy and safety)**
| | ➢ Telephone calls: 1 month, 36, 48, 60 months (safety)

Key baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Low dose DCB (n=207)</th>
<th>High dose DCB (n=207)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>68.2 ± 10.0</td>
<td>68.4 ± 9.3</td>
<td>0.79</td>
</tr>
<tr>
<td>Female gender</td>
<td>79 (38.2)</td>
<td>75 (36.2)</td>
<td>0.68</td>
</tr>
<tr>
<td>Rutherford class (RC) ≥ 3</td>
<td>184 (88.9)</td>
<td>176 (85)</td>
<td>0.56</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>63 (30.6)</td>
<td>76 (36.9)</td>
<td>0.18</td>
</tr>
<tr>
<td>Previous/current smoking</td>
<td>160 (77.3)</td>
<td>155 (74.9)</td>
<td>0.63</td>
</tr>
<tr>
<td>Lesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesion length (mm)</td>
<td>123.9±97.8</td>
<td>128.3±97.3</td>
<td>0.65</td>
</tr>
<tr>
<td>Total occlusions</td>
<td>84 (40.6)</td>
<td>89 (43)</td>
<td>0.62</td>
</tr>
<tr>
<td>Calcification PACSS 3-4</td>
<td>105 (50.5)</td>
<td>117 (57.1)</td>
<td>0.80</td>
</tr>
<tr>
<td>0-1 run off vessels</td>
<td>75 (38.5)</td>
<td>71 (36.6)</td>
<td>0.89</td>
</tr>
<tr>
<td>Total paclitaxel dose (µg)</td>
<td>6971±4026</td>
<td>13035±7483</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bail-out stenting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Type E-F Dissection</td>
<td>4 (2.0)</td>
<td>2 (1)</td>
<td>0.61</td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter stenosis pp (%)</td>
<td>26.4±12.5</td>
<td>26.1±12.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Residual stenosis ≥ 30%</td>
<td>74 (35.8)</td>
<td>81 (39.1)</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Data are given as mean±std or number (%).
Primary endpoint analysis at 12 months

Efficacy: Primary patency

<table>
<thead>
<tr>
<th></th>
<th>DCB Low dose</th>
<th>DCB High dose</th>
<th>Δ (two-sided 90% lower bound)</th>
<th>$P_{\text{non-inferiority}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>Primary patency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low dose</td>
<td>83% (156/188)</td>
<td>81.5% (141/173)</td>
<td>1.5% (-5.2%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Safety: Freedom from MAE

<table>
<thead>
<tr>
<th></th>
<th>DCB Low dose</th>
<th>DCB High dose</th>
<th>Δ (two-sided 90% lower bound)</th>
<th>$P_{\text{non-inferiority}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Freedom from MAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low dose</td>
<td>91% (182/200)</td>
<td>92.6% (175/189)</td>
<td>-1.6% (-6.5%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Patient flow diagram through 2 years

414 patients enrolled
- 47 screen failures
- 17 general criteria
- 30 angiographic criteria

Ranger™ DCB
- 207 patients
- Strata:
 - ≤ 10 cm: 69 patients
 - >10 and ≤ 20 cm: 70 patients
 - >20 and ≤ 30 cm: 68 patients
- 5 deaths
- 2 withdrawals

12-Month Visit
- 200 patients
- 8 withdrawals
- 2 deaths
- 1 lost to FU

24-Month Visit
- 189 patients

In.PACT™ DCB
- 207 patients
- Strata:
 - ≤ 10 cm: 69 patients
 - >10 and ≤ 20 cm: 68 patients
 - >20 and ≤ 30 cm: 70 patients
- 3 deaths
- 5 withdrawals
- 5 lost to FU
- 1 withdrawal by investigator

12-Month Visit
- 193 patients
- 12 withdrawals
- 1 death
- 3 lost to FU

24-Month Visit
- 177 patients
Primary patency through 790 days

Patients without an event at 790 days of follow-up or later were censored at 790 days.

<table>
<thead>
<tr>
<th>KM-estimate (95%CI)</th>
<th>@ 365days</th>
<th>730 days</th>
<th>790 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low dose DCB</td>
<td>87.6% (±2.5)</td>
<td>70.6% (±3.4)</td>
<td>64.4% (±3.6)</td>
</tr>
<tr>
<td>High dose DCB</td>
<td>88.7% (±2.4%)</td>
<td>71.4% (±3.5)</td>
<td>63.7% (±3.7)</td>
</tr>
</tbody>
</table>
Key outcomes through 790 days

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Low dose DCB (n=207)</th>
<th>High dose DCB (n=207)</th>
<th>P value§</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>3.6% (7/196)</td>
<td>2.2% (4/181)</td>
<td>0.6</td>
</tr>
<tr>
<td>Device or procedure-related death</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>Major amputation</td>
<td>0% (0/189)</td>
<td>0.6% (1/177)</td>
<td>1.0</td>
</tr>
<tr>
<td>Clinically driven TLR</td>
<td>17.3% (33/191)</td>
<td>13.0 % (23/177)</td>
<td>0.3</td>
</tr>
<tr>
<td>All TLR*</td>
<td>17.8% (34/191)</td>
<td>13.0 % (23/177)</td>
<td>0.3</td>
</tr>
<tr>
<td>Primary sustained clinical improvement†</td>
<td>69.5% (121/174)</td>
<td>74.3% (124/167)</td>
<td>0.4</td>
</tr>
<tr>
<td>Haemodynamic improvement‡</td>
<td>69.2% (117/169)</td>
<td>67.3% (107/169)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Values are percentage (n/N). The numerator is the number of subjects with events prior to the close of the visit window. The denominator includes subjects with events or those without events having follow-up on or past the opening of the visit window.

*Includes clinically-driven TLR and duplex-driven/incidental TLR.

† Defined as improvement in Rutherford classification by one or more categories compared with baseline, without TLR.

‡ Defined as an increase in the ankle-brachial index by ≥0·10 compared with baseline or to an ankle-brachial index ≥0·90, without TLR.

§ P-values based on Fisher’s-exact test.
Distribution of Rutherford categories

≈70% of patients with no or minimal symptoms @ 2y
Walking impairment questionnaire

Walking impairment
Baseline
24 MFU
Distance scores
Baseline
24 MFU
Speed scores
Baseline
24 MFU
Stair climbing scores
Baseline
24 MFU
Summary

- First head-to-head comparison of two DCBs with different paclitaxel dosages and coating technologies for femoropopliteal interventions
- Complex real world lesion subset with high proportion of CTO`s >40%
- Low dose DCB (Ranger 2.0μg/mm²) and high dose DCB (IN.PACT 3.5μg/mm²) showing both excellent primary patency and low TLR rates through 2 years
- Low mortality after 2 years; Follow-up ongoing up to 5 years