





# 3 years of experience in more than 100 patients using TAG conformable with active control - what did we learn?



Dittmar Böckler Department of Vascular and Endovascular Surgery University Hospital Heidelberg, Germany

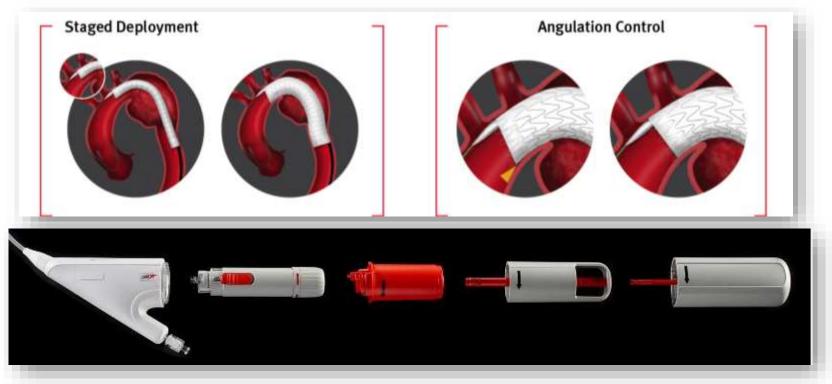


#### Disclosures

- Consultant
  - Cook, Endologix, Gore, Medtronic
- Research Grant
  - Cook, Gore, Maquet, Medtronic, Siemens
- Advisory Board
  - Endologix, Gore, Maquet, Medtronic, Siemens
- Speaker Honoraria
  - Cook, Endologix, Gore, Maquet, Medtronic, Siemens
- Major Stokeholder
  - none





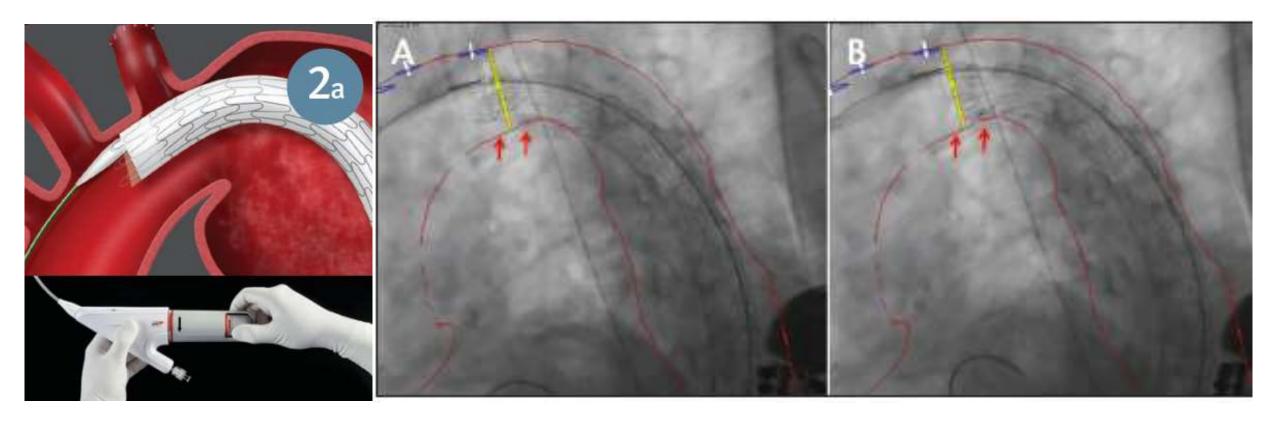

#### 23 Years of Stent Graft Evolution







## CTAG with ACTIVE CONTROL System (ACS)




- Staged deployment > continous blood flow ensures heodynamic stability
   > enabling adjustment of device placement
- Deployment sequence changed intermediated (50%) and full deployment
- Lockwires attach stentgraft to the catheter system
- Active proximal angulation > enabling apposition in the arch





## Angulation Control is Optional



at physician discretion – at intermediate and after full deployment – but can not be reversed or undone





## Overall TEVAR Experience Heidelberg (n=684)

March 1997 – January 2021

|                                    | Total | Elective | Emergency (47.5%) |
|------------------------------------|-------|----------|-------------------|
| Thoracic aortic aneurysm (TAA)     | 122   | 86       | 36                |
| Ruptured TAA                       | 44    | -        | 44                |
| Thoracoabdominal aneurysm          | 93    | 63       | 30                |
| Penetrating aortic ulcer (PAU)     | 103   | 57       | 46                |
| Traumatic aortic rupture           | 35    | E.       | 35                |
| Chronic Typ B dissection           | 80    | 62       | 18                |
| Acute/subacute Typ B dissection    | 104   | 42       | 62                |
| Intramural haematoma (IMH)         | 47    | 28       | 19                |
| Typ A Dissection                   | 13    | 4        | 9                 |
| Aortobronchial/-esophageal fistula | 20    | -        | 20                |
| Patch Rupture                      | 3     | 1        | 2                 |
| Post CoA Aneurysm                  | 10    | 7        | 3                 |
| Anastomotic aneurysm               | 10    | 9        | 1                 |





# CTAG with ACS - Experience Heidelberg July 2017 – Januar 2021 – 3.5 years

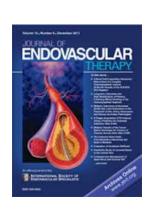
684 TEVAR procedures

361 patients with 556 CTAG

145 patients
with 217 devices
CTAG with Active Control System



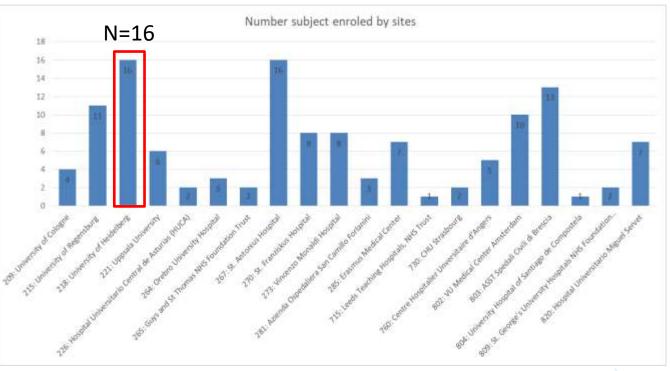



1st pat. in July 2017 – post-coarctatio aneuyrsm






## Objective & Methods


- To evaluate 3 yrs. technical and clinical outcomes of CTAG with ACS
- Retrospective single center study prospectively mantained data base



submitted





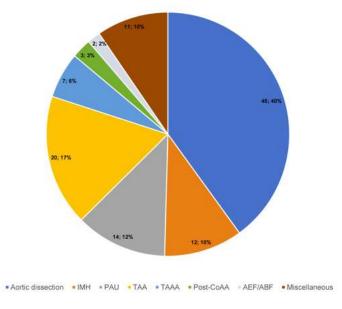


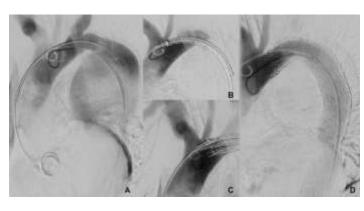




## Patient Characteristcs (n=115)

|                                        | Total $(N = 115)$ |
|----------------------------------------|-------------------|
| Age, years (median/IQR)                | 63 (53-74)        |
| Gender (male/female)                   | 82/33             |
| ASA-classification (median/IQR)        | 3 (2-4)           |
| Heart failure                          | 10 (8.7%)         |
| Ischemic heart disease                 | 28 (24,3%)        |
| History of stroke                      | 11 (9.5%)         |
| COPD                                   | 13 (11.3%)        |
| Diabetes mellitus                      | 14 (12.2%)        |
| Peripheral vascular disease            | 4 (3.5%)          |
| Renal Insufficiency (Crea > 1.2 mg/dl) | 27 (23.5%)        |
| Arch types                             |                   |
| Туре                                   | e I 30 (26.1%)    |
| • •                                    | II 55 (47.8 %)    |
| Type I                                 |                   |


Data are expressed using median/interquartile range; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease; Crea: creatinine






## Indications (n=115)

| Underlying pathology | Numbers (%) |
|----------------------|-------------|
| Aortic Dissection    | 46          |
| IMH                  | 5           |
| PAU                  | 9           |
| TAA                  | 5           |
| TAAA                 | 1           |
| AEF /ABF             | 5           |
| Miscellanous         | 9           |









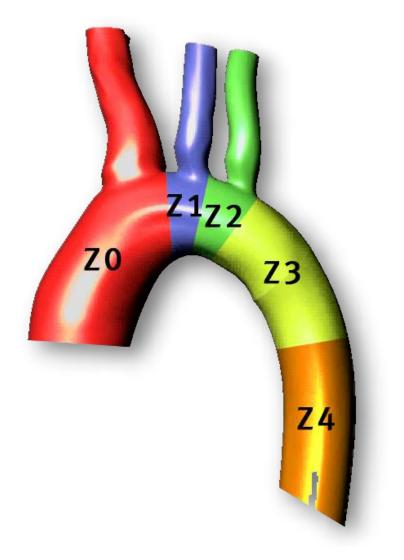
#### Procedural Data

• 173 devices in 115 consecutive patients

• Percutaneous access 58.2%

• Duration 190 min (70-142)

• Fluoroscopy time 9 min (7-14)


• Contrast volume 94 cc (70-145)

• LSA coverage 44.3% (n=51)





## Landing Zones – Aortic Arch Involvement (n=115)



| Proximal Landing Zone | Numbers    |
|-----------------------|------------|
| Zone 0                | 1 (0.9%)   |
| Zone 1                | 15 (13%)   |
| Zone 2                | 38 (33%)   |
| Zone 3                | 31 (26.9%) |
| Zone 4                | 30 (26.1%) |





### Technical Results (n=115)

Median Follow up: 6 mths. (1.2-13.8)

|                         |              | % (n)        |
|-------------------------|--------------|--------------|
| Technical Success       |              | 95.7 % (110) |
| Accuracy*               | Landing Zone | 87.8 % (101) |
| Inner Wall Apposition * | Bird beaking | 93 % (107)   |

<sup>\*</sup> Different patients : 4 in total

#### Definitions:

- Technical Results: according to the reporting standards <sup>1</sup>
- Accurate placement was deployment within the intended LZ<sup>2</sup>
- Non-conformability: gap of more than 2 mm between the proximal gold band and the inner aortic wall <sup>2</sup>

<sup>&</sup>lt;sup>1</sup> Fillinger MF, et al. Society for vascular surgery Ad Hoc committee on TEVAR reporting standards reporting standards for thoracic endovascular aortic repair (TEVAR). J Vasc Surg 2010;52(4):1022-33.

<sup>&</sup>lt;sup>2</sup> Böckler D et al. Thoracic Endovascular Aortic Repair of Aortic Arch Pathologies with the Conformable Thoracic Aortic Graft: Early and 2 year Results from a European Multicentre Registry, Eur J Vasc Endovasc Surg (2016) 51, 791-800

### Clinical Results (n=115)

Mean Follow up: 6.2 mths. (1.2-18)

| SAE                  | Specification            | % (N)       |
|----------------------|--------------------------|-------------|
| Endoleak             | Overall                  | 11.3 % (13) |
|                      | Type la                  | 0.8 (1)     |
|                      | Type Ib                  | 1.7 % (2)   |
|                      | Type II                  | % (9)       |
|                      | Type III                 | 0.8 %(1)    |
| Stroke               | Overall                  | 3.5 % (4)   |
|                      | Ischemia                 | 2           |
|                      | Bleeding                 | 2           |
| Spinal Cord Ischemia | Grading 3 b <sup>1</sup> | 3.5 % (4)   |

<sup>&</sup>lt;sup>1</sup> Fillinger MF, et al. Society for vascular surgery Ad Hoc committee on TEVAR reporting standards reporting standards for thoracic endovascular aortic repair (TEVAR). J Vasc Surg 2010;52(4):1022-33.





#### Reintervention Rates

Mean Follow up : 6.2 mths. (1.2- 18)

Overall reintervention
20.9 %

> Inhospital reintervention 15.7 %

Reintervention during FU
3.8 %

| Procedure-related reintervention              | Total                                | RI in hospital                       | RI during FU                  |
|-----------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|
| Conversion                                    | 1                                    | 0                                    | 1                             |
| Distal endograft extension                    | 2                                    | 1                                    | 1                             |
| Endolining                                    | 3                                    | 2                                    | 1                             |
| Proximal extension ± rerouting                | 2                                    | 1                                    | 1                             |
| LSA revascularization                         | 2                                    | 2                                    |                               |
| LSA occlusion                                 | 6                                    | 6                                    |                               |
| False lumen occlusion/candy plug              | 1                                    | 1                                    |                               |
| Balloon dilatation/type III EL                | 1                                    | 1                                    |                               |
| LCCA revascularization                        | 1                                    | 1                                    |                               |
| LCCA ligation + balloon dilatation/type Ia EL | 1                                    | 1                                    |                               |
| Visceral bypass                               | 2                                    | 1                                    |                               |
| Thrombendarterectomy CFA                      | 2                                    | 2                                    |                               |
| Access wound complication                     | 3                                    | 3                                    |                               |
| Stent graft iliac artery                      | 1                                    | 1                                    |                               |
| Craniotomy for intracranial bleeding          | 1                                    | 1                                    |                               |
| Total                                         | 29 in 24 patients<br>(24/115; 20.9%) | 24 in 18 patients<br>(18/115; 15.7%) | 4 in 4 patients (4/103; 3.8%) |





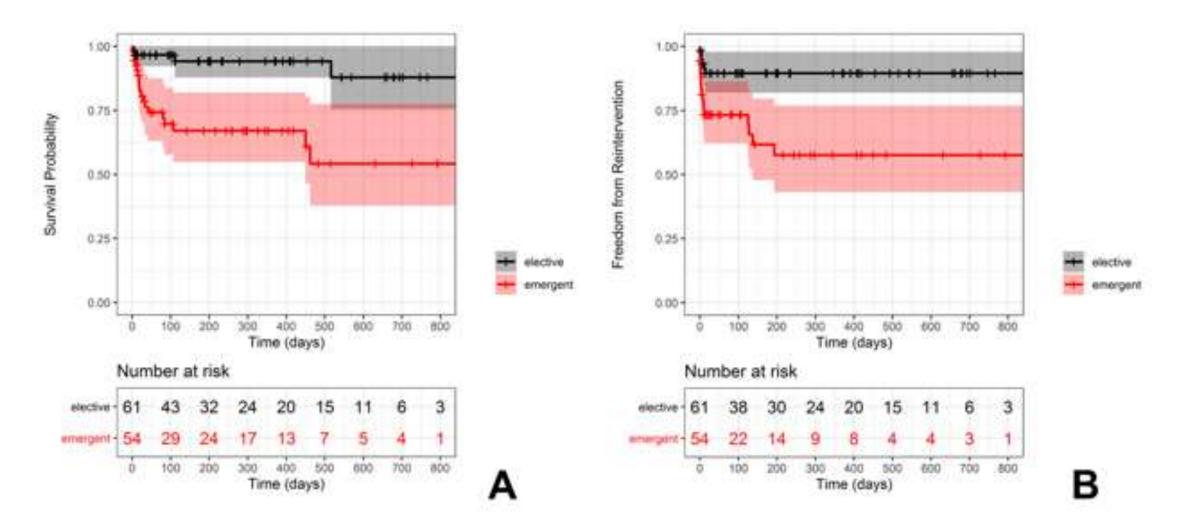
## Mortality

Mean Follow up: 7 mths. (0,1-20)

All cause mortality
19 % (22/115)

Procedure related mortality
12 % (14/115)

|                                 | All-cause-mortality | Procedure-related mortality |
|---------------------------------|---------------------|-----------------------------|
| Multi-organ failure             | 10                  | 8                           |
| Cardiac failure                 | 2                   | 2                           |
| Respiratory failure             | 1                   | 1                           |
| Stroke                          | 1                   | 0                           |
| Cancer                          | 1                   | 1                           |
| Aorto-esophageal fistula        | 1                   | 0                           |
| Upper gastrointestinal bleeding | 2                   | 1                           |
| Rupture/death during surgery    | 1                   | 1                           |
| Undetermined                    | 3                   | 0                           |
| Total                           | 22/115 (19.1%)      | 14/115 (12.2%)              |


Data are presented as absolute/relative numbers





## Survival & Reinterventions electiv versus emergency (n=115)

Mean Follow up: 6 mths. (1.2-18)







## Use of Active Control (n = 115)

| M |     | 2a      |
|---|-----|---------|
|   |     |         |
|   |     | 洲       |
|   | 15. | - Wales |

|                          | When / Where                     | % (n)     |
|--------------------------|----------------------------------|-----------|
| Optional angulation used |                                  | 22 % (25) |
|                          | intermediate deployment alone    | 78 % (18) |
|                          | intermediate and full deployment | 22 % (5)  |
|                          | after full deployment alone      | 0         |
| Depending on Arch Type   | Type I                           | 8 % (2)   |
|                          | Type II                          | 52% (12)  |
|                          | Type III                         | 39 % (9)  |
| Underlying Pathology     | Degenerative disease (TAA & PAU) | 35 % (8)  |
|                          | Dissection (AoD & IMH)           | 48 % 11)  |
|                          | Others                           | 17 % (4)  |





## When did I use or not use angulation some learnings

- > optional, at your discretion, but irreversible!
- > expecially in gothic arches and aneurysms
- if in dissections, IMH or trauma, only at the intermediate deployment
- > no angulation in short PLZ and pathology at inner curvature
- > don't angulate in straight descending aorta > crimping of the device





## Benefits of CTAG with Active Control System





## BENEFITS OF THE GORE\* TAG\* CONFORMABLE THORACIC STENT GRAFT WITH ACTIVE CONTROL SYSTEM

- Approved for aneurysms, isolated lesions, and type B aortic dissections
- Radial force adapted to underlying disease
- Highly conformable and therefore ideal for aortic arch pathologies
- No significant bare stent lengths, which mitigates risk of retrograde dissections
- Short precurved olive
- Unsheathed device allows the use of multiple devices with one access
- Staged deployment for parallax correction, with no rapid pacing necessary
- Stent graft attached onto the catheter for total placement control
- Deployment from trailing to leading ends allows for accurate landing at the celiac trunk level
- There is time to optimize accuracy, angulation, and apposition
- 11. A good device for teaching new operators





## Stentgraft is fixed to the delivery system with lockwires

Full control during deployment > enhancing precise placement





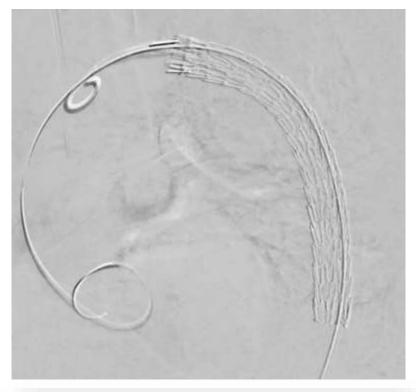






## New Deployment Sequence

Precise deployment at distal landing zonesclose to celiac trunk








## Staged Deployment

No rapid pacing > less invasive more cases in local anesthesia > time saving







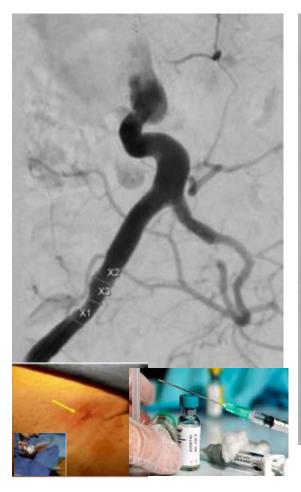


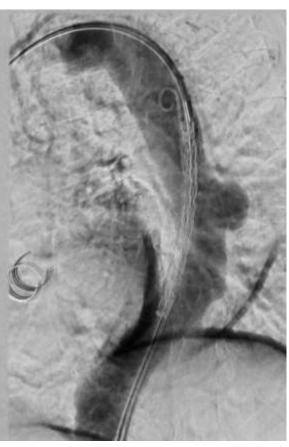
## Staged Deployment > Time for optimization

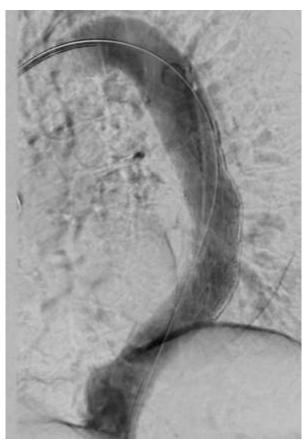
#### Ideal decive for teaching








## Reduced profile (minus 2 French)

To reduce & avoid access problems, to facilitate percutaneous approach







- First low profile CTAG Active Control Implant worldwide on 21st January 2019
- percutaneous procedure in local anesthesia



### Summary & Conclusion



- > This single center study shows encoring performance of the CTAG
- > 3.5 year experience in 115 patients is absolutely convincing
- New CTAG has additional features:
  - > Staged deployment > more accuracy
  - > New deployment sequence > precise proximal and distal placement
  - > Optional angulation (22%) > better apposition > no Type Ia EL
- > Longterm results to be awaited



