The safety and effectiveness of carotid revascularization with the Acculink stent and the CGuard stent. Independent randomized study

Savr Bugurov, Andrey Karpenko, Pavel Ignatenko
Centre of Vascular and Hybrid Surgery
E.N. Meshalkin National Medical Research Center of the Ministry of Health
Disclosure

Speaker name:
Bugurov Savr

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
Objectives

The main objective of this randomized study was to compare the clinical outcomes and neuroprotection of conventional carotid stent versus the new MicroNet stent CGuard™

Hypothesis

The study hypothesis was a significant reduction of the number of procedural and postprocedural new DW-MRI lesions after CAS with the novel CGuard™ mesh covered stent compared with the Acculink™ reference stent.
Study design

• The SIBERIA trial was an Independent Investigator Initiated Study.
• It was a single center, open label, randomized comparison of two interventional arms.
• The study was externally monitored and imaging data were evaluated by independent core laboratory
• 100 consecutive patients were enrolled with 1y clinical FU
• DW-MRI scan at baseline, at 24-48 hour after the procedure, and at the 30-days follow-up.
• The study used the anti-embolic device Emboshield NAV, the pore diameter of the device is equal to the diameter of the cells of the Cguard stent (pore size 165 μm)
ENDPOINTS

Primary endpoint:
New ischemic brain lesions after the procedure of carotid stenting identified by MRI within 24-48 hours and 30 days.

Secondary endpoints:
Technical success, major neurovascular adverse events (death, stroke, myocardial infarction) developed during the procedure and within 30 days.
Randomized (n=100)

Patients screened for enrollment (n=159)

n= 46 not meeting inclusion criteria
n= 13 declined treatment allocation through randomization

Allocated to Acculink (n=50)
baseline MRI performed (n=50)
intervention as allocated*
(n=50)

Post-procedural MRI performed (n=50)
Analyzed for primary endpoint (n=50)

Allocated to CGuard (n=50)
baseline MRI performed (n=50)
intervention as allocated*
(n=50)

Post-procedural MRI performed (n=50)
Analyzed for primary endpoint (n=50)

Vital status (n=50)
MRI FU (n=47)&

30d follow-up

Vital status (n=50)
MRI FU (n=49)#

* - all CAS with EmboShield NAV6 as per the Centre routine
$ - atrial fibrillation (n=14)
- severe renal failure (n=12)
- restenotic lesion (n=9)
- MRI contraindication (n=11)
& 2 patients declined full clinical follow-up due to travel distance, MRI scanner not functional in 1 – the patient declined to visit
# 1 MRI scan Corelab-defined inevaluable due multiple artifacts
<table>
<thead>
<tr>
<th></th>
<th>ACCULINK n=50</th>
<th>CGUARD n=50</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years [range]</td>
<td>67 [62;72]</td>
<td>65 [61;69]</td>
<td>0.27</td>
</tr>
<tr>
<td>Gender, (male) n (%)</td>
<td>35 (70 %)</td>
<td>38 (76%)</td>
<td>0.65</td>
</tr>
<tr>
<td>Coronary heart disease, n (%)</td>
<td>42 (88 %)</td>
<td>39 (78 %)</td>
<td>0.61</td>
</tr>
<tr>
<td>Previous coronary revascularization (CABG or PCI), n (%)</td>
<td>25 (50 %)</td>
<td>22 (32 %)</td>
<td>0.69</td>
</tr>
<tr>
<td>Chronic heart failure, n (%)</td>
<td>44 (88 %)</td>
<td>45 (90 %)</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus treatment, n (%)</td>
<td>8 (16 %)</td>
<td>10 (20 %)</td>
<td>0.79</td>
</tr>
<tr>
<td>Arterial hypertension, n (%)</td>
<td>49 (98 %)</td>
<td>48 (96 %)</td>
<td>1</td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>20 (40 %)</td>
<td>17 (34%)</td>
<td>0.67</td>
</tr>
<tr>
<td>Peripheral arterial disease, n (%)</td>
<td>17 (34%)</td>
<td>15 (30%)</td>
<td>0.83</td>
</tr>
<tr>
<td>Ipsilateral stroke ≤ 6m, n (%)</td>
<td>6 (12%)</td>
<td>11 (22%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Ipsilateral TIA ≤ 6m, n (%)</td>
<td>3 (6.0 %)</td>
<td>5 (10 %)</td>
<td>0.46</td>
</tr>
<tr>
<td>Contralateral carotid artery stenosis ≥50%; n (%)</td>
<td>9 (18%)</td>
<td>18 (36%)</td>
<td>0.75</td>
</tr>
<tr>
<td>Contralateral carotid artery occlusion; n (%)</td>
<td>3 (6.0%)</td>
<td>8 (16%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Degree of stenosis (QCA, % [range])</td>
<td>76 [67;88]</td>
<td>75 [72;89]</td>
<td>0.72</td>
</tr>
<tr>
<td>Affected side right, n (%)</td>
<td>27 (54 %)</td>
<td>30 (60%)</td>
<td>0.77</td>
</tr>
</tbody>
</table>
RESULTS

DW-MRI embolism at 48h
(raw data, external CoreLab, blinded analysis)

RESULTS

SMALLER lesions

FEWER lesions

p = 0.003
RESULTS

DW-MRI embolism at 48h
(external CoreLab, blinded analysis)

57% reduction in lesion (per-patient) average volume

4.5-fold reduction in total volume of peri-procedural lesions (per-patient)
RESULTS
MRI and Clinical outcomes at 30 days

**PERSISTENT Cerebral Lesions (FLAIR)**

CGuard arm: No new DW-MRI lesions at 30 days

<table>
<thead>
<tr>
<th></th>
<th>Acculink</th>
<th>CGuard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

p = 0.030

CGuard arm: No MACNE at 30 days

<table>
<thead>
<tr>
<th></th>
<th>Acculink</th>
<th>CGuard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NB. Data are for ipsilateral lesions as per the study protocol main endpoint
**CLINICAL OUTCOMES after 1 year**

<table>
<thead>
<tr>
<th></th>
<th>ACCULINK n=50</th>
<th>CGUARD n=50</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restenosis</td>
<td>2 (4%)</td>
<td>0 (0%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Vessel occlusion</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>1</td>
</tr>
<tr>
<td>Deaths</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL MACE</td>
<td>10 (20%)</td>
<td>1 (2%)</td>
<td>0.2</td>
</tr>
</tbody>
</table>
In a randomized, controlled, externally monitored clinical trial with independent data analysis, 

**MicroNET-covered carotid stent** – in relation to a classic (single-layer) carotid stent:

- **reduced 4.5-fold the magnitude of peri-procedural silent brain infarcts volume**
- **abolished post-procedural silent infarcts** that, in contrast, were on-going with the classic stent

These findings may impact decision-making in carotid revascularization for primary and secondary stroke prevention, including stent type selection