

Thrombolyis techniques for iliofemoral DVT

Rolf P. Engelberger

Division of Angiology, Cantonal Hospital Fribourg

Switzerland

Disclosure

Speaker name:

Rolf P. Engelberger

I have the following potential conflicts of interest to report:

- ☐ Consulting
- ☐ Employment in industry
- ☐ Stockholder of a healthcare company
- ☐ Owner of a healthcare company
- Other(s): research grant from BTG
- I do not have any potential conflict of interest

Thrombolysis for iliofemoral DVT

1. Systemic thrombolysis

- reduces risk of PTS (RR 0.66) but markedly increased bleeding risk (RR 1.73)¹
- Problem...

With systemic thrombolysis clot lysis >50% more frequent in non-occlusive than occlusive

thrombus²

→ with systemic administration thrombolytic drug does not reach the target...

Thrombolysis for iliofemoral DVT

- 1. Systemic thrombolysis
- 2. Percutaneous catheter-based techniques
 - 1. CDT = Catheter Directed Thrombolysis
 - Direct infusion of a thrombolytic drug into the thrombotic occlusion
 - using a multisidehole catheter
 - 2. PMT = (Pharmaco)-Mechanical Thrombectomy

Catheter-Directed Thrombolysis CDT

Advantages:

- Minimally invasive
- In comparison with systemic thrombolysis
 - Higher local concentrations: Efficacy

Drawbacks:

- Need for thrombolytic drugs
- Treatment duration

CaVenT study

L J N C

Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial

Tone Enden, Ylva Haig, Nils-Einar Kløw, Carl-Erik Slagsvold, Leiv Sandvik, Waleed Ghanima, Geir Hafsahl, Pål Andre Holme, Lars Olaf Holmen, Anne Mette Njaastad, Gunnar Sandbæk, Per Morten Sandset, on behalf of the CaVenT Study Group

CaVenT study → Summary

		CDT group	Control group	P-value
Ilio-Femoral Patency	6 months	65.9	47.4	0.012
	2 years	74.7	59.6	0.028
	5 years	79.1	70.9	0.218
Femoro- Popliteal Reflux	6 months	65.2	77.1	0.073
	2 years	66.7	83.2	0.009
	5 years	62.1	84.3	0.004
PTS	6 months	30.3	32.2	0.77
	2 years	41.1	55.6	0.047 -> NNT 7
	5 years	42.5	70.8	0.0001 > NNT 4

Which thrombolytic drug?

- The most commonly used recombinant tissue plasminogen activator (rtPA)
 - The amount of rtPA and infusion volume varies in the literature from 20 to 120 mL/h, but rtPA should not exceed 1 mg/hour

Fibrinolytic	Direct Plasminogen Activator?	Fibrin Specificity (Relative to Fibrinogen)	PAI Resistance*
Streptokinase	No	8_8	120
Urokinase	No	14 -1 4	=
Alteplase	Yes	++	++
Reteplase	Yes	+	+
Tenecteplase	Yes	+++	+++

• Infused together with either UFH or LMWH, both weight-adjusted

How to administer the thrombolytic drug in CDT?

- Continuous infusion (as in CaVenT)
 - e.g. Cragg-McNamara®, UniFuse®, EkoSonic®
- Pulsatile injections ("pulse spray technique")
 - For CDT e.g. Pulse Spray® Infusion System®

How to administer the thrombolytic drug in CDT?

- Continuous infusion (as in CaVenT)
 - e.g. Cragg-McNamara®, UniFuse®, EkoSonic®
- Pulsatile injections ("pulse spray technique")
 - For CDT e.g. Pulse Spray® Infusion System®
 - For PMT e.g. Power Pulse® rtPA injection with AngioJet ® catheter

How to administer the thrombolytic drug in CDT?

- Continuous infusion (as in CaVenT)
 - e.g. Cragg-McNamara®, UniFuse®, EkoSonic®
- Pulsatile injections ("pulse spray technique")
 - For CDT e.g. Pulse Spray® Infusion System®
 - For PMT e.g. Power Pulse® rtPA injection with AngioJet ® catheter
- Ultrasound-assisted (or accelerated) thrombolysis
 - e.g. EkoSonic®

Ultrasound-Assisted Thrombolysis (USAT)

BERNUTIFUL

LINC

Primary Endpoint:

% of Thrombus Load Reduction

PTS after 1 year - Villalta score

Engelberger et al. Circ Cardiovasc Interv 2015;8:e002027 Engelberger et al, J Thromb Haemost 2017; 15:1351-1360

Duration of CDT?

	Study	Thrombolysis protocol	Treatment duration
Venography controlled	CaVenT ¹	0.01 mg kg ⁻¹ h ⁻¹ with a maximal dose of 20 mg per 24 h and maximal duration of 96 h	2.4 days (SD 1.1)
	Copenhagen experience ²	Bolus of 10 mg rtPA followed by rtPA 1.2 mg in 120 ml saline/h	 a. Continuous infusion protocol: Median 71 h (range 25-146 h) b. Pulse-spray infusion: Median 52 h (range 22-142 h)
Fixed duration	Swiss Venous Stent Registry ³	Standard dose of 20mg rtPA over 15h	17.5 h (SD 6.9)

Role of IVC Filters in Endovenous Therapy for Deep Venous Thrombosis: The FILTER-PEVI (Filter Implantation to Lower Thromboembolic Risk in Percutaneous Endovenous Intervention) Trial

Table 1 Interventional approaches used			
Approach	Filter group $(n = 70)$	Control group $(n = 71)$	
Trellis	34	36	
AngioJet	8	9	
Thrombolytic therapy via infusion catheter	32	35	
Balloon venoplasty	56	54	
Stent	18	16	
	1/70 = 1.4%	8/71 = 11.3%	

Blood clot caught

Contemporary Trends and Comparative
Outcomes With Adjunctive Inferior
Vena Cava Filter Placement in Patients
Undergoing Catheter-Directed
Thrombolysis for Deep Vein Thrombosis
in the United States

Insights From the National Inpatient Sample

FIGURE 2 Contemporary Trends in Inferior Vena Cava Filter Placement Among Patients Undergoing Catheter-Directed Thrombolysis in the United States (2005 to 2013)

50%
40%
30%
20%
10%
10%
Year

TABLE 2 Matched Race-Adjusted Outcomes of Patients Undergoing Catheter-Directed Thrombolysis With or Without Inferior Vena Cava Filter Placement

	No IVCF Group	IVCF Group	OR (95% CI)	p Value
Death	23 (1.0)	15 (0.7)	0.67 (0.34-1.26)	0.20
Blood transfusion	237 (10.5)	255 (11.3)	1.09 (0.90-1.31)	0.37
GI bleeding	44 (1.9)	32 (1.4)	0.73 (0.46-1.15)	0.17
Intracranial hemorrhage	13 (0.6)	15 (0.7)	1.16 (0.55-2.45)	0.70
Hematoma	47 (2.1)	76 (3.4)	1.63 (1.13-2.36)	0.009
Procedure-related hemorrhage	23 (1.0)	32 (1.4)	1.40 (0.81-2.39)	0.23
Length of stay (days)	6.0 (3.0-9.0)	6.0 (4.0-9.0)	-	< 0.001
Charges (\$)	$92,881 \pm 80,194$	$104,049 \pm 75,572$	-	< 0.001
Peripheral angioplasty	1329 (58.8)	1394 (61.7)	1.13 (1.001-1.27)	0.048
Peripheral stent	634 (28.1)	673 (29.8)	1.09 (0.96-1.24)	0.20
Procedure-related renal failure	8 (0.4)	4 (0.2)	0.50 (0.15-1.65)	0.25
Acute renal failure	188 (8.3)	195 (8.6)	1.04 (0.84-1.28)	0.71
Transient ischemic attack	2 (0.1)	1 (0.04)	0.50 (0.045-5.49)	0.57
Embolic stroke	2 (0.1)	2 (0.1)	1.01 (0.14-7.20)	0.99
Procedure-related cardiac complications	5 (0.2)	5 (0.2)	1.01 (0.29-3.51)	0.98

Conclusion:

IVCF use was not associated with a decrease in inhospital mortality but with **higher inpatient charges and longer length of stay**

What brings the future for CDT?

• Intra-thrombus Microbubbles with USAT

Magnetic nanoparticles for selected thrombolysis

Conclusion

- Catheter directed thrombolysis a well accepted treatment for iliofemoral DVT
- Pulse spray technique possibly more efficient than continuous infusion
 - but advantage of ultrasound-assisted CDT unclear (.... maybe in combination with MB??)
- However for good clinical outcome, the most important issues are:
 - Good patient selection
 - Concomitant treatment of underlying obstructive vein lesion → Stenting

