

Temsirolimus Adventitial Delivery to Improve ANGiographic Outcomes Below the Knee (TANGO)

Ehrin Armstrong, MD MSc MAS FACC FSCAI FSVM
Professor of Cardiology
University of Colorado
Denver, Colorado

Disclosure

Speaker name: Ehrin Armstrong

I have the following potential conflicts of interest to report:

- Consulting: Abbott Vascular, Boston Scientific, Cardiovascular Systems, Gore, Medtronic, Philips, PQ Bypass, Shockwave
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
 Other(s)

I do not have any potential conflict of interest

Presented on Behalf of Enrolling Sites

- PI: Ian Cawich, MD, Arkansas Heart Hospital, Little Rock, AR, USA
- Ehrin Armstrong, MD, VA Eastern Colorado Health System, Denver, CO, USA
- Jon George, MD, Einstein Hospital, Philadelphia, PA, USA
- Jaafer Golzar, MD, Advocate Health Care, Chicago, IL, USA
- Miguel Montero-Baker, MD, Baylor University, Houston, TX, USA
- Mahmood Razavi, MD, St. Joseph's Vascular Institute, Orange, CA, USA
- Mehdi Shishehbor, DO, MPH, PhD, University Hospital, Cleveland, OH, USA

Background

- Current infrapopliteal treatments lack long-term durability
- Drug-coated balloons continue to show poor or no results in BTK
- Failure of DCB in BTK region may be inherent to heavy thrombus, plaque and calcium burden
- Direct adventitial delivery provides a shortcut through the disease
- Temsirolimus is an ideal agent to reduce restenosis
- As interventionalists, we need to be stewards of new technology and make decisions based on high quality trials and positive RCT data

DCB in BTK

A Series of Negative Studies

Study	Endpoint Measure	DCB Group	PTA Group	Difference	Outcome		
In.PACT DEEP (JACC 2014;64:1568-76)	12-month Freedom from Restenosis	59.0%	64.5%	-5.5%	Further studies		
	12-month Freedom from CD-TLR	88.1%	86.5%	1.6%	discontinued due to safety		
	12-month Freedom from Major Amp	91.2%	96.4%	-5.2%	concerns		
BioLUX P-II (JACC Intv 2015;8:1614-22)	6-month Freedom from Restenosis	46.9%	58.6%	-11.7%	Negative efficacy result		
Lutonix BTK (J Inv Cardiol 2019;31:205-11)	6-month Primary Efficacy Endpoint*	74.5% 63.5%		11.0%	Did not meet primary		
	12-month Primary Efficacy Endpoint	60.4%	60.9%	-0.5%	endpoint, signal dropout at 12 months		
*Composite of freedo							

BTK Challenge for Intimal Drug Delivery: Barrier Tissue

Narula, et al. JACC 2018;72:2152-63.

Adventitia/Perivascular Tissue is Key Driver of Restenosis

- "Am I looking forward to new DCB BTK results?"
- We all are familiar with the adventitia by now
- Can DCB still work in BTK?

Maybe

How?

Images: Narula, et al. JACC 2018;72: 2152-63.

The Bullfrog[®] Micro-Infusion Device

- Adventitial delivery confirmed with contrast medium
- Dose control: Inject from separate syringe only after needle is engaged
- Unlimited payload: Not limited to the tiny surface area and thickness of a drug coating
- Multiple injections with one device – no need to swap out balloons for long lesion treatment

TANGO Trial Design and Enrollment

- TANGO: Temsirolimus adventitial delivery to improve ANGiographic Outcomes below the knee
- Phase II prospective, multi-center, randomized, doubleblinded, dose-escalation trial
- FDA IND-regulated
- Randomized 2:1 for treatment vs. control

Temsirolimus 0.1 mg/mL (n=20) Temsirolimus 0.4 mg/mL (n=21)

vs.

Saline control (n=20)

- Primary endpoint (biologic signal)
 - 6-month angiographic TVAL Transverse View Area Loss
- Key secondary endpoint (primary endpoint for Phase 3)
 - 6-month composite freedom from Clinically Relevant Target Lesion Failure (CR-TLF):
 - CD-TLR
 - Ischemia-related major amputation
 - Clinically relevant target lesion occlusion

Characteristic	Treatment				Control				
N	41				20				
Age (years)	72.4 ± 9.4				73.2 ± 7.9				
Male	63%				60%				
Black or African Descent	32%				30%				
Caucasian	68%				60%				
Obesity (BMI ≥ 30 kg/m²)	34%				25%				
CAD	51%				70%				
Diabetes Mellitus	59%				70%				
Hyperlipidemia	90%				85%				
Hypertension	85%				85%				
Tobacco Use (Current)	10%				20%				
Rutherford 3 4 5	42%	17	7%	42%	45%	10)%	45%	
ABI	0.8 ± 0.41				0.9 ± 0.36				
Lesion Length (cm)	10.9 ± 7.8				12.7 ± 7.8				
TASCII A B C D	32%	17%	22%	29%	20%	25%	10%	45%	
Severe Calcification	13%				10%				
Total Occlusion at Baseline	32%				45%				

TANGO Efficacy Results

Mean 6-month Transverse-View Area Loss (TVAL) in PP Group, Relative to Transverse Lumen Area Remaining

Kaplan-Meier Freedom from Clinically Relevant Target Lesion Failure in PP Group

Treatment 74.4% (N=35)

Control 47.2% (N=18)

TANGO Efficacy Results Excluding TASC A Lesions

Mean 6-month Transverse-View Area Loss (TVAL) in TASC B-D Group, Relative to Transverse Lumen Area Remaining

Kaplan-Meier Freedom from Clinically Relevant Target Lesion Failure in PP Group

Treatment 70.2% (N=22)

Control 31.0% (N=14)

Conclusions

- BTK disease has been more difficult to achieve positive improvement with drug-enhanced therapy than ATK
- BTK drug treatment must pass through excessive tissue barriers
- While new DCB and DES are in development, positive results have been limited to short, focal segments
- Adventitial drug delivery has provided robust outcomes in a multicenter, dual-blinded Phase 2 RCT
- A sizable effect has been seen in more complex lesions with adventitial temsirolimus delivery