The CERAB technique—procedural tips and clinical outcome

Michel MPJ Reijnen, MD, PhD

Department of Vascular Surgery, Rijnstate, Arnhem
MultiModality Medical Imaging Group, University of Twente, Enschede
The Netherlands
Disclosure

Speaker name:
Michel Reijnen

I have the following potential conflicts of interest to report:

✓ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Kissing stent configuration

• Meta-analysis on 605 patients
 • 81% primary patency at 2-year
 • 84% intermittent claudication
 • 53% TASC A & B

• Patency affected by:
 • Radial mismatch
 • Differences in stent conformation
 • The protrusion length of the stents in the distal aorta
 ➢ Re-circulation, turbulence and stasis
 ➢ Mesenchymal tissue, thrombus and intimal hyperplasia

Covered Endovascular Reconstruction of the Aortic Bifurcation - CERAB

Goal: to provide a more anatomical and physiological endovascular reconstruction of the aortic bifurcation
Covered Endovascular Reconstruction of the Aortic Bifurcation - CERAB

- In vitro study and comparison of CERAB patients with matched KS patients
- No difference in preoperative anatomy or indication for intervention
- Significantly more mismatch in KS configuration

<table>
<thead>
<tr>
<th>Method</th>
<th>Area (mm²)/Volume (mm³)</th>
<th>CERAB mean (SD)</th>
<th>KS mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse</td>
<td>Radial mismatch area</td>
<td>14.1 (4.2)</td>
<td>172.7 (70.0)*</td>
</tr>
<tr>
<td></td>
<td>Radial mismatch volume</td>
<td>307.7 (131.2)</td>
<td>7268 (3810.9)*</td>
</tr>
<tr>
<td>ROI</td>
<td>Radial mismatch area</td>
<td>11.0 (4.8)</td>
<td>165.8 (71.5)*</td>
</tr>
<tr>
<td></td>
<td>Radial mismatch volume</td>
<td>240 (127.3)</td>
<td>7047.0 (3239.0)*</td>
</tr>
</tbody>
</table>

*denotes P <0.05

CERAB

Laser Particle Image Velocimetry

CERAB and BM kissing stents; Mostly laminar flow throughout the cardiac cycle

BM Kissing stents; turbulence and recirculation at phases B and C

Suboptimal placed limbs:

- Inferior stent-to-wall apposition (Double-D configuration)
- 4-fold increase in mismatch area

Clinical results of CERAB

Midterm outcome

- February 2009 – July 2016
- 130 elective patients, two centers
- Age 61 (36-81) years, 69 male
- Chimney procedures excluded
- Previous aorto-iliac intervention in 41%

Rutherford classification:

<table>
<thead>
<tr>
<th>Grade</th>
<th>n</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.8%</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>66.1%</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>17.3%</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>14.2%</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

TASC -II classification:

<table>
<thead>
<tr>
<th>Grade</th>
<th>n</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7</td>
<td>(5.4%)</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>(5.4%)</td>
</tr>
<tr>
<td>D</td>
<td>116</td>
<td>(89.2%)</td>
</tr>
</tbody>
</table>
Clinical results of CERAB

Complications

- **Procedural**
 - Unintended dissection, n=6
 - Bleeding, n=4
 - Stent dislocation, n=1
 - Stent deformation, n=1
 - Thrombus formation, n=2

- **Post Procedural**
 - Pneumonia, n=3
 - Stent deformation, n=3
 - Thrombosis, n=2
 - CFA occlusion, n=1
 - MODS, n=1
 - Renal insufficiency, n=1

- No 30-day mortality
Clinical results of CERAB

Complications

• Procedural
 • Unintended dissection n=6
 • Bleeding n=4
 • Stent dislocation n=1
 • Stent deformation n=1
 • Thrombus formation n=2

• Post Procedural
 • Pneumonia n=3
 • Stent deformation n=3
 • Thrombosis n=2
 • CFA occlusion n=1
 • MODS n=1
 • Renal insufficiency n=1

• No 30-day mortality

Taeymans K et al. J Vasc Surg May;67(5):1438-1447
XperCT
Cone beam CT tool
Clinical results of CERAB

Complications

• **Procedural**
 - Unintended dissection \(n=6 \)
 - **Bleeding** \(n=4 \)
 - Stent dislocation \(n=1 \)
 - Stent deformation \(n=1 \)
 - Thrombus formation \(n=2 \)

• **Post Procedural**
 - Pneumonia \(n=3 \)
 - Stent deformation \(n=3 \)
 - Thrombosis \(n=2 \)
 - CFA occlusion \(n=1 \)
 - **MODS** \(n=1 \)
 - Renal insufficiency \(n=1 \)

• **No 30-day mortality**
Closure devices
Closure devices
Clinical results of CERAB

Midterm outcome

- Median follow-up 24 months
- Total primary patency
 - 12 months 91%
 - 24 months 89%
 - 36 months 87%
- Secondary patency
 - 12 months 97%
 - 24 months 97%
 - 36 months 97%
- Clinical improvement at 36 months 96%
- Limb salvage rate at 36 months 97%
Clinical results of CERAB

Midterm outcome

Previous treatment of AIOD

- Surgical reconstruction of the aortoiliac segment (n=7)
- Endovascular intervention (N=46, 35%)
 - 46% PBA of the common iliac artery
 (17% kissing balloons)
 - 37% Stenting of the common iliac artery
 (31% kissing stents)

<table>
<thead>
<tr>
<th>One-year follow-up</th>
<th>Yes (n = 46), %</th>
<th>No (n = 80), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency</td>
<td>80</td>
<td>88</td>
</tr>
<tr>
<td>Primary assisted patency</td>
<td>91</td>
<td>97</td>
</tr>
<tr>
<td>Secondary patency</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three-year follow-up</th>
<th>Yes (n = 46), %</th>
<th>No (n = 80), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>Primary assisted patency</td>
<td>83</td>
<td>88</td>
</tr>
<tr>
<td>Secondary patency</td>
<td>94</td>
<td>98</td>
</tr>
</tbody>
</table>

Taeymans K et al. J Vasc Surg 2018 May;67(5):1438-1447
Clinical results of CERAB

Debulking
Clinical results of CERAB

Debulking

After debulking with 8Fr Rotarex
Clinical results of CERAB

Role of outflow stenosis

HD significant outflow stenosis causes;
• 2-fold decrease in peak outflow velocity
• 3-fold decrease in TA-WSS in both CERAB and control

In CERAB the TA-WSS was 2-fold lower compared to the control model, independent of the lesion severity

Outflow stenosis after CERAB will have a higher tendency to progress in time and may require early treatment

Summary

• CERAB is related to the most optimal geometry and flow patterns for extensive AIOD and good clinical outcome is good up to 3-year follow-up

• Proper placement and optimal deployment of the limbs and early treatment of outflow stenosis are important to improve outcome

• Cone beam CT and debulking may improve outcomes, particularly in re-do cases

• Endovascular options seem unlimited, but the preferred treatment remains tailor-made, particularly in complex cases
The CERAB technique - procedural tips and clinical outcome

Michel MPJ Reijnen, MD, PhD

Department of Vascular Surgery, Rijnstate, Arnhem
MultiModality Medical Imaging Group, University of Twente, Enschede
The Netherlands